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Abstract. Three-dimensional motion of a slender vortex tube, embedded in an inviscid incompressible fluid,
is investigated under the localized induction approximation for the Euler equations. Using the method of
matched asymptotic expansions in a small parameter ε, the ratio of core radius to curvature radius, the
velocity of a vortex filament is derived to O(ε3), whereby the influence of elliptical deformation of the core
due to the self-induced strain is taken into account. It is found that there is an integrable line in the core
whose evolution obeys a summation of the first and third terms of the localized induction hierarchy.

PACS. 47.32.Cc Vortex dynamics – 02.30.Ik Integrable systems

1 Introduction

An asymptotic theory that concisely spotlights some qual-
itative behavior of a curved vortex filament in an inviscid
incompressible fluid is the so called ‘localized induction ap-
proximation (LIA)’ [1]. The filament curve X = X (s, t),
expressed as functions of the arclength s and the time t
evolves according to

X t = Cκb ; C =
Γ

4π
log

(
L

σ0

)
, (1)

where κ is the curvature, b the binormal vector, Γ the
circulation, and a subscript denotes a differentiation with
respect to the indicated variable. The long and short cut-
off lengths L and σ0 for the Biot-Savart law and thus C
are assumed to be constant.

A distinguishing feature is that (1) is a completely
integrable evolution equation equivalent to a cubic non-
linear Schrödinger equation (NLS ) for the Hasimoto map:

φ(s, t) = κ ei
� s τds, (2)

a combination of curvature κ and torsion τ [2]. Magri [3]
unveiled the bi-Hamiltonian structure behind the inte-
grability of NLS, and manipulated a recursion operator
generating successively an infinite sequence of commuting
vector fields. Relying on this, Langer and Perline [4] con-
structed its counterpart for (1). The resulting sequence
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of integrable vector fields is called the ‘localized induction
hierarchy (LIH)’. The first three of them are

V (1) = κb , V (2) =
1
2
κ2t + κsn + κτb ,

V (3) = κ2τt + (2κsτ + κτs)n +
(
κτ2 − κss − 1

2
κ3

)
b ,

(3)

where (t ,n , b) are the Frenet-Serret vectors. Remarkably,
when specialized to a circle with constant curvature κ �= 0
and τ = 0, a superposition of V (1) and V (3) coincides
with the higher-order formula for traveling speed of a thin
axisymmetric vortex ring [5,6].

This unexpected coincidence inspires us to pursue the
higher-order velocity of a vortex filament. We note in pass-
ing that the Moore-Saffman filament equation [7], valid to
O(ε2), for a vortex filament with axial velocity in the core
is reducible to a summation of V (1) and V (2) [8].

Here, we rule out axial flow at leading order, but make
an attempt at an extension of matched asymptotic expan-
sions to O(ε3) under the LIA.

2 Setting of problem

In order to look into the flow field near the core, it is
expedient to introduce local coordinates (x̃, ỹ, ξ), along
with local cylindrical coordinates (r, ϕ, ξ) such that x̃ =
r cosϕ and ỹ = r sinϕ, moving with the filament. Here ξ is
a parameter along the central curve X of the vortex tube,
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defined so as to satisfy Ẋ (ξ, t) · t(ξ, t) = 0. Here a dot
stands for a derivative in t with fixing ξ. Given a point x
sufficiently close to the core, there corresponds uniquely
the nearest point X (ξ, t) on the centerline of filament.
Then x is expressed as

x = X (ξ, t) + r cosϕn + r sinϕb . (4)

The coordinates (r, ϕ, ξ) are converted into orthogonal
ones (r, θ, ξ) by adjusting the origin of angle as

θ(ϕ, ξ, t) = ϕ−
∫ s(ξ,t)

s0

τ(s′, t) ds′ , (5)

where s = s(ξ, t) is the arclength along the centerline [7].
We define the relative velocity V = (u, v, w) as func-

tions of r, θ, ξ and t by

v = Ẋ (ξ, t) + uer + veθ + wt , (6)

where er and eθ are the unit vectors in the radial and
azimuthal directions respectively. The vorticity ω = ∇×v
is calculated through

ω = ωrer + ωθeθ + ζt (7)

=

{
1
r

∂w

∂θ
− 1
h3

∂v

∂ξ
+

η

h3
κw sinϕ− 1

h3

∂Ẋ

∂ξ
· eθ

}
er

+

{
−∂w
∂r

+
1
h3

∂u

∂ξ
+

η

h3
κw cosϕ+

1
h3

∂Ẋ

∂ξ
· er

}
eθ

+
{

1
r

∂

∂r
(rv) − 1

r

∂u

∂θ

}
t , (8)

where

η = |∂X/∂ξ| , h3 = η(1 − κr cosϕ) . (9)

We are concerned with a quasi-steady motion of a vor-
tex filament. Suppose that the leading-order flow is cir-
culatory motion with prescribed velocity field v(0)(r) as
a function only of r. Consistently with the LIA, we may
pose the following form for the perturbation solution in
a power series in ε = σ0/R0, the ratio of a typical core
radius σ0 to a typical curvature radius R0:

u = εu(1) + ε2u(2) + ε3u(3) + · · · ,
v = v(0)(r) + εv(1) + ε2v(2) + ε3v(3) + · · · ,
w = ε2w(2) + · · · , Ẋ = Ẋ

(0)
+ ε2Ẋ

(2)
+ · · · . (10)

Inspection from (8) and (10) tells us that

ωr = ε2ω(2)
r + · · · , ωθ = ε2ω

(2)
θ + · · · ,

ζ = ζ(0)(r) + εζ(1) + ε2ζ(2) + ε3ζ(3) + · · · . (11)

To integrate the Euler equations, it is advantageous to
eliminate the pressure at the outset and to deal exclusively

with vorticity and vector potential A for the velocity: v =
∇×A. Introduce a Stokes streamfunction

ψ(x ) = (1 − κr cosϕ)A(x ) · t(ξ) (12)

= ψ(0)(r) + εψ(1) + ε2ψ(2) + ε3ψ(3) + · · · , (13)

for the flow in the plane transversal to t .

3 Asymptotic development of Biot-Savart law

This section presents only a brief sketch of how to perform
an asymptotic development, valid near the core, of the
Biot-Savart law for A(x ).

The vorticity is dominated by the tangential contri-
bution ζ. We stipulate that |ζ| decays sufficiently rapidly
to zero with distance r from the vortex centerline. The
contribution A‖ from ζ is

A‖(x ) =
1
4π

∫∫∫
ζ(x̃, ỹ)t(s)(1 − κx̃)
|x −X − x̃n − ỹb| dx̃dỹds . (14)

Use of a shift-operator, being adapted from Dyson’s
technique [5], facilitates to rewrite (14) in a form amenable
to a multi-pole expansion as

A‖(x ) =
1
4π

∫
ds

{∫∫
dx̃dỹζ(x̃, ỹ)(1 − κx̃)

× exp [−x̃(n · ∇) − ỹ(b · ∇)]

}
t(s)

|x −X (s)| (15)

=
1
4π

∫
ds

{∫∫
dx̃dỹζ

(
1 − κx̃− x̃(n · ∇) − ỹ(b · ∇)

+
1
2

[
x̃2(n · ∇)2 + 2x̃ỹ(n · ∇)(b · ∇) + ỹ2(b · ∇)2

]

+ κx̃2(n · ∇) + κx̃ỹ(b · ∇) + · · ·
)}

t(s)
|x −X (s)| · (16)

We shall know from the inner expansion in Section 4
the following dependence of ζ on ϕ:

ζ(x̃, ỹ) = ζ0 + ζ11 cosϕ+ ζ12 sinϕ+ ζ21 cos 2ϕ+ · · · ,
(17)

where

ζ0 ≈ ζ(0)(r) + κ2ζ̂
(2)
0 (r) , ζ11 ≈ κζ̂

(1)
11 (r) + κ3ζ̂

(3)
11 (r) ,

ζ12 ≈ κζ̂
(1)
12 (r) , ζ21 ≈ κ2ζ̂

(2)
21 (r) . (18)

In ζ̂(k)
ij , the superscript k stands for order of perturbation,

and i labels the Fourier mode with j = 1 and 2 being
corresponding to cos iθ and sin iθ respectively.

Substituting (17) and (18) into (16), we get the first
two terms Am and A‖d as

A‖(x ) = Am(x ) + A‖d(x ) + · · · , (19)
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where

Am(x ) =
Γ

4π

∫
t(s)

|x −X (s)|ds ,

A‖d(x ) = − 1
16π

[
2π

∫ ∞

0

r3ζ(0)dr
] ∫

κsn + κτb

|x −X (s)|ds

−d
(1)

2

∫
ds

[
κ(n · ∇) + κ2

] t

|x −X (s)| , (20)

with

d(1) =
1
4π

{[
2π

∫ ∞

0

r2ζ̂
(1)
11 dr

]
− 1

2

[
2π

∫ ∞

0

r3ζ(0)dr
]}

,

(21)

being the strength of dipole.
The first term Am in (19) pertains to a flow field in-

duced by a curved vortex line of infinitesimal thickness,
and is called the ‘monopole field ’. The correction term A‖d

corresponds to a part of the flow field induced by a line of
dipoles, based at the vortex centerline, with their axes ori-
ented in the binormal direction. The origin of dipole field
is attributable to the curvature effect; by bending a vor-
tex tube, the vortex lines on the convex side are stretched,
while those on the concave side are contracted, producing
effectively a vortex pair [6].

The components of vorticity perpendicular to t make
its appearance at O(ε2). In view of (8), the second-order
terms ω(2)

r and ω(2)
θ are expressible as

ω(2)
r =

ζ(0)

v(0)
ψ̂

(1)
11 (κs cosϕ+ κτ sinϕ) , (22)

ω
(2)
θ =

rζ(0)

v(0)

[(
2
r
− ζ(0)

v(0)

)
ψ̂

(1)
11 +

∂ψ̂
(1)
11

∂r
− rv(0)

]

×(κτ cosϕ− κs sinϕ) , (23)

where ψ̂(1)
11 will be determined as (29) in Section 4.

The vector potential A⊥ associated with the transver-
sal vorticity is, to O(ε2),

A⊥(x ) ≈ 1
4π

∫
ds

|x −X (s)|
[∫∫

(ωrer + ωθeθ)dx̃dỹ
]
.

(24)

Substitution from (22) and (23) yields

A⊥ ≈ 1
4

[∫ ∞

0

r2ζ̂
(1)
11 dr

] ∫
κs(s)n(s) + κ(s)τ(s)b(s)

|x −X (s)| ds ,

(25)

the dipole field originating from the transversal vorticity.
Collecting (20) and (25), we have

A ≈ Γ

4π

∫
t

|x −X |ds−
d(1)

2

∫
κb × (x −X )

|x −X |3 ds . (26)

The tangential component ψ defined by (12) is evalu-
ated near the core (σ0 � r � R0), which in turn supplies
the matching condition on the inner solution. Retaining
only the terms with log(L/r), in the spirit of LIA, and
the dipole term, for clarity, we have

ψ(x ) = d(1)κ
cosϕ
r

+ log
(
L

r

) {
Γ

2π

(
1 − κ

2
r cosϕ

)

+
1

16π
κ2

[
Γ

(
1 − 1

2
cos 2ϕ

)
r2 − 2d(1)

]

+
Γ

32π

[(3κ3

4
− κss + κτ2

)
cosϕ− κ3

4
cos 3ϕ

− (2κsτ + κτ) sinϕ
]
r3 +

d(1)

2

[(
−κ

3

4
+ κss

− κτ2
)

cosϕ+ (2κsτ + κτs) sinϕ
]
r

}
+ · · · .

(27)

4 Inner solution and filament equation

The inner solution is addressed by solving the Euler equa-
tions in the moving coordinates. We introduce the di-
mensionless variables; the radial distance r is normalized
by σ0, the core radius, time by R2

0/Γ , the relative veloc-
ity by Γ/σ0 and the centerline velocity by Γ/R0. With
this, we write down dimensionless form of the Euler equa-
tions and their curl, viewed from the moving coordinates
(r, θ, ξ), along with the subsidiary relation that links ψ
to ζ.

The solution at O(ε) is well-known [9–11]:

ψ(1) =
[
κψ̂

(1)
11 − (

Ẋ
(0) · b)

r
]
cosϕ, (28)

where

ψ̂
(1)
11 = v(0)

{
r2

2
+

∫ r

0

dr′

r′[v(0)(r′)]2

∫ r′

0

r′′
[
v(0)(r′′)

]2

dr′′
}

+c(1)11 v
(0), (29)

and c
(1)
11 is a constant bearing with the freedom of shift-

ing the local origin r = 0 of the moving frame, in the
n-direction, within an accuracy of O(ε) [6]. The matching

condition (27) at O(ε) then demands the LIA (1) for Ẋ
(0)

.
The vorticity at O(ε) is calculable through

ζ(1) = −κ
(
aψ̂

(1)
11 + rζ(0)

)
cosϕ . (30)

Fortunately an explicit form of p(1) is available by inte-
grating the transversal components of the Euler equations:

p(1) = κ

[
v(0) ∂ψ̂

(1)
11

∂r
− ζ(0)ψ̂

(1)
11 − r(v(0))2

]
cosϕ . (31)
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The gradient of p(1), in turn, drives axial flow at O(ε2).
Discarding the irrelevant terms from the t-component of
the Euler equations, we obtain

−v(0)(eθ · ṫ (0)
) +

v(0)

r

∂w(2)

∂θ
= −1

η

∂p(1)

∂ξ
· (32)

A derivative in t of (1) gives

eθ · ṫ (0)
= C(κs cosϕ+ κτ sinϕ) , (33)

and (32) admits a compact form of the solution:

w(2) =

{
−Cκ+

∂ψ̂
(1)
11

∂r
− ζ(0)

v(0)
ψ̂

(1)
11 − rv(0)

}
r

×(κτ cosϕ− κs sinϕ) . (34)

We observe from (34) that torsion and arcwise vari-
ation of curvature are vital for the presence of pressure
gradient and thus of axial velocity at O(ε2). The stream-
function ψ(2) at O(ε2) for flow in the transversal plane is
built in parallel with the case of a circular vortex ring [6].

We are now prepared to make headway to third order.
The terms proportional to κ3 in Ẋ

(2)
are in complete

agreement with those for a circular vortex ring [6]. Hence
it suffices to concentrate our attention on the terms tied
with torsion and non-constancy of curvature. Retaining
only the terms associated with these three-dimensional
effects in the vorticity equation at O(ε3), we are left with

ζ̇(1) −
(
ė(0)

r · eθ

) ∂ζ(1)

∂θ
+
v(0)

r

∂ζ(3)

∂θ
+ u(3)∂ζ

(0)

∂r
+ · · · =

ζ(0)

η

∂w(2)

∂ξ
+

(
ζ(1) + κr cosϕζ(0)

) t

η
· ∂Ẋ

(0)

∂ξ
+ · · · , (35)

the last two terms of which vanish because of (1). The

third-order velocity Ẋ
(2)

under question is included in
ζ(3) and u(3). Relevant to the traveling speed is the terms
proportional to cosϕ and sinϕ, the dipole components.

The first term ζ̇(1) is obtained from (30) as

ζ̇(1) = −
(
aψ̂

(1)
11 + rζ(0)

)(
κ̇(0) cosϕ+ κṪ (0) sinϕ

)
,

(36)

where

T (ξ, t) =
∫ s(ξ,t)

0

τ(s′, t) ds′ , (37)

and κ̇(0) and Ṫ (0) are substituted from the intrinsic form
of (1) [1]. Likewise we have

ė(0)
r · eθ = C

(κss

κ
− τ2

)
− Ṫ (0) . (38)

With these, (35) is integrated for ζ(3) and is coupled
to ζ–ψ relation at O(ε3). Imposition of the matching con-
dition (27) eventually gives rise to the third-order correc-

tion Ẋ
(2)

. Combining with (1), we arrive at a higher-order
extension expressed, in dimensional variables, as

X t = C

{
κb + c1κ

3b + c2

[
(2κsτ + κτs)n

+(κτ2 − κss)b + κ2τt
]}

, (39)

where

c1 =
2πd(1)

Γ
, c2 =

π

Γ

∫ ∞

0

ζ(0)r3dr . (40)

The Hasimoto map (2) transforms (39) into

iφt + C

(
φss +

1
2
|φ|2φ

)
+A(t)φ− Cc2

{
φssss

+
3
2

(|φ|2φss + φ2
sφ̄

)
+

(
3
8
|φ|4 +

1
2
∂2

∂s2
|φ|2

)
φ

}

+ C
(
c1 +

c2
2

) {
∂2

∂s2
(|φ|2φ) +

3
4
|φ|4φ

}
= 0, (41)

where A(t) is an arbitrary function of t. Interestingly
equivalent equations have been realized in the context
of biquadratic Heisenberg spin chain [12]. The simple
form (40) of c1 is derived by reducing further the for-
mula for a vortex ring [6]. Its derivation will be reported
elsewhere.

We see that the third-order correction terms closely
resemble V (3). The special case of c1 = −c2/2 attains
integrability. Remember that the dipole strength d(1) and
therefore c1 are sensitive to location of the origin r = 0 of
the moving coordinates [6]; by a displacement of origin in
the n-direction by εx0, measured in the inner length-scale,

d(1) → d(1) − x0/2π , c1 → c1 − x0 . (42)

It is confirmed that c1 is adjustable so as to be coincident
with V (3), and that the local origin for this case is indeed
contained inside the core. We conclude that there is an
integrable line that obeys a summation of the first and
the third terms of the LIH.

This fact is illustrated with a specific vorticity distri-
bution at O(ε0) of constant vorticity in the circular core,
that is, the Rankine vortex. The azimuthal velocity at
O(ε0) takes, in dimensionless variables,

v(0) =
r

2π
for r ≤ 1 ; v(0) =

1
2πr

for r > 1 . (43)
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Choosing c(1)11 = −5/8 amounts to placing the local origin
r = 0 at the center of core circle, and, from (21), d(1) =
−3/16π . In this case x0 = 0. For a general value of x0,
the third-order terms of (39) become

C

4

{
(2κsτ+κτs)n+

[
κτ2−κss−

(3
2

+4x0

)
κ3

]
b+κ2τt

}
.

(44)

Recall that the choice of x0 = −5/8 corresponds to placing
the origin r = 0 at the stagnation point relative to the
moving frame. Choice of x0 = −1/4, a value between x0 =
−5/8 and 0, renders (39) and (41) completely integrable.

We have extended the matched asymptotic expansions,
to third order, for the motion of a vortex filament. This
amounts to taking account of finite thickness of the core.
The preservation of integrability to third order is indica-
tive of structural stability of the Hasimoto soliton.
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